MATH SOLVE

4 months ago

Q:
# The coordinates of the vertices of the triangle shown are p (2, 13), q (7, 1) and r (2, 1). what is the length of segment pq in units?

Accepted Solution

A:

To find the length or distance of two coordinates, we use pythagoras theorem

l² = Δx² + Δy²

Because we want to know the length of PQ, we use coordinate P and coordinate Q

(xp, yp) = (2,13)

(xq, yq) = (7,1)

Input the coordinates

l² = Δx² + Δy²

l² = (xp - xq)² + (yp - yq)²

l² = (2-7)² + (13-1)²

l² = (-5)² + (12)²

l² = 25 + 144

l² = 169

l = √169

l = 13

The length is 13 unit length

l² = Δx² + Δy²

Because we want to know the length of PQ, we use coordinate P and coordinate Q

(xp, yp) = (2,13)

(xq, yq) = (7,1)

Input the coordinates

l² = Δx² + Δy²

l² = (xp - xq)² + (yp - yq)²

l² = (2-7)² + (13-1)²

l² = (-5)² + (12)²

l² = 25 + 144

l² = 169

l = √169

l = 13

The length is 13 unit length